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Abstract

Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and nap:
hazoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squares (CLS
principal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to find the b
wavelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy for waveleng
region optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into account different
spectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of all the multi
variate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fithess function based on the ro
mean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-propagation
learning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regression methc
From the resulted ANN models, the spectral regions in which lowest fithess could be obtained were chosen. Comparison of the results reveale
that the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was successfull
applied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction nents of interests in mixtures and avoiding separation steps
in the analytical procedures.

Multivariate spectral calibrations, which are now become  Recently, a new family of multivariate calibration meth-
standard methods for performing quantitative spectral analy- ods based on the concept of net analyte signal (NAS) has
sis, allow the simultaneous determination of several analytesbeen proposeb—18]. NAS was defined by Lorbgb] as
in a given mixturd1]. Partial least squares (PLS) and princi- the part of a mixture spectrum that is useful for model
pal component regression (PCR) are the most common multi-building; this implies that NAS is part of the spectrum of
variate calibration methods for quantitative spectral analysis mixture that is orthogonal to the spectra of interferences
[2-4]. These full spectrum multivariate calibration methods and background variations. The NAS calculations are used
offer the advantages of speed in the determination of compo-both for estimation of the figures of merit of an analyt-

ical method[6—8] and for the construction of multivari-
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[13] and Goicoechea and Olivieri (HLA/GQ)4] are con- neural network for wavelength selection in PLS calibration
structed based on the NAS concept. Other NAS-based mul-[33].
tivariate calibration methods have also been proposed in In the present work, we applied an experimental design
which the vectors of NAS of mixtures are used as input strategy for variation of the three spectral paramefe4s.
for other multivariate calibration methods such as classical Very different combinations of spectral parameters were
least squares (NAS/CLS), principal component regression selected and, in each combination, the performance of mul-
(NAS/PCR) and partial least squares regression (NAS/PLS)tivariate calibration models used was evaluated. An artificial
[15-18]. Moreover, in a simple case, the norm of the NAS neural network model with back-propagation learning algo-
vector can be used to construct a univariate calibration rithm was used to model the relationship existed between
model, where this parameter is plotted against the analytethe prediction ability of the models and the correspond-
concentration and a linear relationship is observed, ide- ing selected spectral parameters. From the optimized ANN
ally. model, those spectral parameters that give most of the results
Application of the mentioned methods to multi- were selected for each multivariate calibration model. Four
component spectroscopic analysis usually requires spectrabifferent NAS-based multivariate calibration models includ-
variable selection for building well-fitted models and avoid- ing NAS/CLS, NAS/PCR, NAS/PLS and univariate exten-
ing non-modeled interferenc§s9—-21]. Training the multi- sion of NAS calculation were used. The methods were used
variate calibration methods with selected spectral regions, for simultaneous determination of antazoline and naphazo-
rather than full-spectrum region, allows the informative line in nasal solution.
part of the spectrum, which is related to the variation of Naphazoline hydrochloride (NAP) [2-(1-naphtylmethyl)-
concentration of analyte, to be modeled and, therefore, 2-imidazoline monohydrochloride] is a sympathomymetic,
other parts of spectrum which are related to the varia- belonging to the imidazole group. It is a vasoconstrictor of
tion of concentration of other analytes and/or background relatively long-lasting action that acts on thereceptors
variations will be discarded. Hence, the performance of of the vascular smooth musc|d5]. Antazoline (ANT) is
multivariate calibration models will be enhanced. Several another imidazoline ligand which has alpha 2-adrenoceptor
approaches have been proposed for selection of optimalantagonistic properties. It is now widely recognized that imi-
set of spectral regions for multivariate calibration such as dazoline derivatives provided withky-adrenoceptor antag-
generalized simulating annealifd2], genetic algorithms  onist properties not only exhibit a high affinity fat,-
[23], artificial noise introduction in PLS modelinf4], adrenoceptors but also bind to non-adrenergic imidazoline
wavelet transform[25], successive projections algorithm sites in various tissuef36]. Pharmaceuticals containing
[26] and moving windows selection stratefi7]. Genetic the two active ingredients (anthazoline and naphazoline)
algorithms (GA) are an interesting, flexible and widely are currently commercialized in our country as nasal solu-
used variable selection method among different proposedtion.
strategies. In recent years, the moving windows strategy
(MWS) have been applied for wavelength region selec-
tion [15-18]. In this method, multivariate calibration meth- 3 peoretical background
ods are run on different selected wavelength windows and,

consequently, those revealing better results are selected. c|.s pPLS, ANN and experimental design are well doc-
Two spectral parameters (i.e. startingand endingh) are ymented in the literature and, therefore, these methods are
varied in order to select the spectral windows. However, not discussed. The readers can refer to the cited literature
the interval between the sensors (i.e. wavelength interval, for more discussion about these meth{tis4]. Here, only

WI) in the selected windows is another MWS require- those sections related to NAS calculations and calibrations
ment that should be optimized to obtain most relevant gpe discussed.

results.

Artificial neural networks (ANN) are nonparametric non-
linear modeling techniques that have attracted increasing2.1. Notations
interest in recent yeaf28-30]. Nonlinear multivariate maps
use a nonlinear transformation of the input variable space to  In this section, the following notations will be used. A
project inputs onto the designated attribute values in out- capital letter in boldface demonstrates a matrix and a low-
put space. The strength of modeling with layered, feed- ercase letter in boldface denotes a vector. Lowercase italic
forward artificial neural networks lies in the flexibility of letters denote the scalars. Meanwhile, the following matrices
the distributed soft model defined by the weight of the net- and vectors will be used through the present worksthen
work. Both linear and nonlinear mapping functions may be data matrix (R) composed of the absorbance data sém-
modeled by suitably configuring the network. Multilayer ples at: wavelengths (or sensors), aclu vector of the pure
feed-forward neural network trained with back-propagation spectrum of analyte k (3, am x 1 vector of calibration con-
learning algorithm become increasingly popular techniques centrations of analyte k (¢ and a 1x n vector of unknown
[31,32]. Recently, Cagiin-Vallvey et al. applied Kohonen sample absorbance data (r).
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2.2. Net analyte signal calculations concentration of analyte in the mixtures can be written in the
classical least square (CLS) form:
Lorber has defined the NAS for an analyte k in a given

mixture as the part of its spectrum, which is orthogonal to the R* = ¢si¢ (7)
space spanned by the spectra of all other analytes and inter- . . . .
ferencedb]. Some different algorithms have been proposed In C_LS regression, the major requirementis that the concen-
for NAS calculation$9-12]. In this work, the algorithm sug- trz_atlo_n _Of all abso_rbm_g compone_nts Sh(.)md be known and
gested by Lorber for inverse multivariate calibrations was this limits the application of CLS in the simultaneous deter-

employed[12]. First, the PLS regression was done on the m|nat!ons. However, n the NA.S/CLS model (Eq)). .R
calibration data (Randey) and, at optimum number of fac- contains the spectral information of the analyte of interest

tors. the absorbance data matrix was reconstru&)adld‘ter (not the absorbance contribution of other coexisting compo-
that, thef{_k matrix containing the absorbance data of all nents). Therefore, CLS can be successfully applied to the

S S : . NAS data.
existing species in the calibration sample expect the analyte . . . o
k was calculated by rank annihilation method: NAS/CLS is an ideal model in which it is assumed that

calculated NAS only contains the spectral information of the
R_x = R — aydy (1) analyte of interest. But, in some instances, the calculated NAS

should be containing some spectral impurity of other sources
wheredy is the spectral information of the analyte of inter- rather than analyte because of interactions between compo-
est,¢& is the estimated concentration of the analyte k by the nents, some non-linearities or other sources. In these cases,
following equation: the NAS/CLS is not the best choice and inverse calibration
methods especially factor analysis based methods can over-
come these problems. NAS/PCR and NAS/PLS are inverse
regression methods in which the NAS is used as input of PCR
and PLS regression methods.

Ck = ﬁﬁ+ck )

the superscripts “+” denote the matrix pseudo-inversesand
is a scaling factor calculated by E®):

! 3)

o= —Fx5—
dkR+ck 3. Experimental

A projection matrix, which is orthogonal t_y is defined 3.1. Apparatus and reagents
as:

Antazoline and naphazoline (both from Merck Company)
stock solutions were prepared by dissolving appropriate

Net analyte signal vector {}is calculated by post multiply- ~amounts of each drug in triply distilled water.
ing of projection matrix (H) by the vector spectra of mixture  All spectrawere recorded on an Ultrospec 3000 pro (Phar-

H=1-(R) R« (@)

(r): macia Biotech) UV-vis spectrophotometer equipped with
10 mm quartz cells. The Swift(ll) software was used to collect
ri = Hr (5) the absorbance data of the solution into a spreadsheet.

. All necessary programs needed for NAS calculation, CLS,
If r replaced by the matrix of absorbance data (R), the left pcr and PLS regressions and ANN modeling were written
hand side of the E¢5) will be the matrix of NAS of the same  , MATLAB 6.0 (MathWorks Inc.) and run on a Pentium IV

size aR. personal computer with Windows XP operating system.

2.3. NAS-based calibrations 3.2. Methodology
The NAS vector (f) is a characteristic of analyte of inter-
est and its length (norm) is directly related to the analyte

concentration:

Two sets of the standard solutions of mixtures of the two
drugs were prepared (36 calibration solutions and 16 valida-
tion solutions). The calibration set solutions were prepared
HFFEH — be (6) accqrding t_o 6-Ieve|_fu|| factorial design. Using such ades_ign,

maximum information for each compound can be obtained
This is atype of Bear—Lambert equatigin) denote the norm by using only a few numbers of standard solutiongdhle 1,
of a vector and is a scalar ahds a proportionality constant.  the concentrations of standard solutions are represented. In

In Eq. (5), if r replaced by the pure spectrum of analyte order to evaluate the performance of the employed models,
k (sk), the left hand side of this equation will be the net pure 16 standard solutions were considered in the validation set
spectrum of analyte k, i.e. a part of pure spectrum which whose concentrations were selected randomly (Table 2). For
is orthogonal to the spectra of other absorbing specfgs (s preparation of each standard solution, appropriate volumes
The relationship between the matrix of NAS*()Rsﬁ and the of the stock solution of each drug were added to 10.0 ml
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Table 1 (RMSEC), root mean square error of validation (RMSEV)
Concentrations of drugs in the calibration set (g ! and the multiple of determination coefficient for calibration
Solution no. NAP ANT Solution no. NAP  ANT and prediction (é andRZ, respectively).

1 0.87 082 19 26.2 0.82

2 0.87 9.00 20 26.2 9.00 3.3. Experimental design-neural network for wavelength

3 087 170 21 26.2 17.0 .

4 087 253 22 262 253 selection

5 087 335 23 26.2 335

6 0.87 430 24 26.2 43.0 Starting wavelength (SW), ending wavelength (EW) and
7 8.72 0.82 25 36.5 0.82 wavelength interval (WI) are three common spectral param-
8 8.72 9.00 26 36.5 9.00  eters that define a window of wavelength region. These spec-
12 g:;é gg ;; gg:g ;;g tral parameters were used as factorial design factors. The
11 872 1335 29 36.5 335 SW was varied between 200nm and 280 nm in 20 inter-
12 8.72 43.0 30 36.5 43.0 vals and EW was selected between 230 nm and 320 nm in
13 17.4 0.82 31 47.0 0.82 10 nm intervals. The WI was varied between 1 nm and 7 nm.
14 17.4 9.00 32 47.0 9.00 By using the full factorial design, different combinations
ig i;j ;Zg 3431 33:8 gg of spectral factors were selected and, consequently, differ-
17 17.4 335 35 47.0 335 ent wavelength regions were determined. Sub-matrices of
18 17.4 43.0 36 47.0 43.0 the original absorbance data matrix were constructed con-

sidering the selected wavelength region properties. Different
. . L L NAS-based multivariate calibration methods were run on the
volumetric flasks and diluted with triply distilled water. The  ¢\,n-matrices and in each case the RMSEC and RMSEV were

absorbance spectra of each solution was recorded in thegicyated. The fitness function (1), was calculated using the
wavelength region of 230-330nm and digitized in 1.0nm RMSEC and RMSEV:

intervals. The order of recording of absorbance spectra of
calibration and validation samples were chosen randomly in [(mc —n — 1)]RMSEC + myRMSEV?] 12
order to neglect the effect of recording time. n= (me +my —n — 1) (8)

The NAS vectors of each standard solution were calcu-
lated according to the procedure discussed in the theoreti-wherem andm, are the number of standard solutions in the
cal section. The NAS/CLS, NAS/PCR, NAS/PLS programs calibration and validation sets, respectively, andpresents
were written in MATLAB. Leave-one-out cross validation the number of sensors (wavelengths) used in each spectral
combining with theF-test criterion of Thomas and Haaland  region.
[37] were used to select optimum number of factors in the  Now, for each multivariate calibration model, there is a
NAS/PCR and NAS/PLS models. The performance of each (mw x nw) matrix of spectral factors (w2 being the number
model was evaluated by root mean square error of cross val-of selected spectral windows amg, the number of spec-
idation (RMSECV) root mean square error of calibration tral factors, i.eny =3) and a fuy x 1) vector of fitness. A

three-layered feed-forward artificial neural network model

Table 2 with back-propagation of error algorithm was used to model
Concentrations of drugs in the prediction setugml~ (actual), their the relationship between the matrix of spectral factors (D)
corrgsponding predicted values (pred) and percent of relative error (%RE) as independent variables (i.e. input of network) and fitness
Obta'r']ed by NAS/PLS model function (f) as dependent variable. The network used here
Solutionno.  NAP ANT was one that has been discussed previously.

Actual Pred %RE Actual Pred %RE

1 1.60 165 313 176 18.0 2.27

2 6.40 595 -7.03 3.20 3.45 7.81 4. Results and discussion

3 11.2 115 2.68 384 372 -3.12

‘5‘ ;g'g ;ié _5:'%255 2252'64 252'53 _0'3(’)945 Electronic absorption spectra of aqueous solutions of
5 208 201 -336 960 920 —415  20.0pgmi~t of ANT and NAP and a mixture containing

7 224 23.3 401 336 315 —6.25 10.0ug mi~1 of each drug are shown iRig. 1. The high

8 36.8 356 326 144 135 -6.25 degree of overlapping of spectra of drugs is obvious from
9 43.2 422 -023 272 27.2 0.00  this figure.

10 144 14.6 139 16.0 156 -2.50 The first step in any multivariate calibration method is
11 33.6 34.3 208 208 205 —1.44 - . .

12 8.00 785 _187 176 174 114 fmdmg the linear worlflng range for each a'nalyt.e, separately.
13 27.2 27.7 1.69 240 24.1 0.42 For this purpose, a single-component calibration curve was
14 224 21.0 -6.25 8.00 8.4 5.67 plotted for each drug at it&max (i.e. 242nm and 280 nm
15 33.6 33.8 059 11.2 105 -6.25 for ANT and NAP, respectively). It was found that the
16 4.80 456 -5.00 36.8 36.8 0.00

calibration curves were linear in the concentration ranges
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In this section, attempts were made to select the best
wavelength range for each drug separately. For this pur-
pose, an experimental design strategy was used to select
different combinations of spectral parameters. The perfor-
mances of the four different multivariate calibration methods
employed at the selected regions were evaluated. Some dif-
ferent criteria are existed for evaluation of the multivariate
calibration methods through wavelength selection regions
including selectivity (SEL) proposed by Lorber, RMSCYV,
RMSECV and, recently, an error indicator function (EIF)
proposed by Goicoechea and Olivigh#l]. Here, the authors
used the concepts of selectivity, sensitivity and detection limit
to measure the quality of the models. Therefore, they found
spectral regions that had the optimum values for the selectiv-
ity and sensitivity as measured by the NAS calculations. In
almost all approaches, the prediction ability of the optimized
model was emphasized in order to avoid the over fitting prob-
lem. However, in some instances, under fitting problem could
» ) be obtained by using these criteria. Thus, inthis work, we used
of 0.80-75.0ugmi™ for ANT and 1.00-65.@.gml the fitness function (), which is calculated based on the use

for NAP. However, in order to insure that the maximum o hoth the RMSEC and RMSEV, to avoid both under-fitting
absorbance of mixtures do not exceed 3.0, the maximum con-5, over-fitting problems for model evaluation (E8)).

centrations of the two drugs used for preparation of standard  The ANN model used here for modeling the nonlinear
i i -1 . . .
mixture solutions were chosen to be SA@mI™". relationship between spectral parameters and fitness func-
For multivariate calibration modeling, two sets of stan- ons for each multivariate calibration method contains three
dard solutions were prepared. The_ cgllbratlon mlxtures _(36 layers: an input layer, a hidden layer and an output layer. The
samples) were used for model building and the validation iyt jayer has three nodes (spectral parameters) including
mixtures (16 samples) were used to evaluate the performanceSW, EW and W and the output layer contained only one node

Fig. 1. Absorbance spectra of g@ mi~! of ANT and NAP and a mixture
of 10ug ml~ of both drugs.

of the constructed models. (fitness function). A bias unit with a constant activation of
unity was connected to each unitin the hidden and output lay-
4.1. Wavelength region selection ers. The number of nodes in the hidden layer was optimized

through a learning procedure. Several network configurations
Application of the multivariate calibration methods to were tested, each with a different number of hidden layer ele-
the multi-component spectroscopic analysis usually requiresments. The ANN models confined to a single hidden layer
spectral variable selection for building well-fitted models and because network with more than one hidden layer would be
avoiding non-modeled interferences. Meanwhile, through harder to train. To insure that the over fitting and under fit-
the wavelength selection procedure, the non-informative ting of the ANN model do not occur, the fitness function
parts of spectrum of collinear absorbance data are discardedn) was calculated from the training and validation data for
from the original data. The absorbance spectra of the mix- each configuration. For each multivariate calibration model,
tures of ANT and NAP (Fig. 1) can be divided to three the training was stopped when no further improvement was
regions. These include below 235nm, in which both com- found in the fitness function. The network parameters includ-
ponents possess high absorbances so that the absorbance iofg learning rate (), momentum («), number of nodes in the
some mixtures are exceeded that of the instrument reading hidden layer () and transfer functions in the hidden and
between 235 nm and 265 nm which contain more informa- output layers was optimized to give a lower fitness func-
tion about the absorbance data of ANT, and beyond 260 nmtion. It was found that, for all of the neurons, the sigmoid
region, in which the spectral information due to NAP is and linear transfer functions used for hidden and output lay-

predominant. ers, respectively, give better results. The network parameters
Table 3
Neuron architectures used for wavelength region optimization of different multivariate regression methods
Regression method ANT NAP

Nu n o Epoches Ny n o Epoches
NAS/CLS 3 0.94 0.14 28000 2 0.98 0.22 23000
NAS/PCR 3 0.85 0.26 22000 3 0.0.91 0.19 16000
NAS/PLS 2 0.97 0.33 21000 2 0.87 0.24 18000
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Table 4
Optimized spectral parameters obtained by ANN modeling
Regression method ANT NAP

SwW EW Wi SW EW WiI
NAS/CLS 240 280 6 280 320 5
NAS/PCR 250 270 1 270 320 4
NAS/PLS 240 260 1 280 300 3

of the optimized network for each multivariate calibration
method are presented Table 3.
After the weights and the structures of the optimized net-

1227

works were determined, the spectral parameters were scanned

in 1.0 nm intervals. In each case, the fitness of the multivari-
ate calibration model was predicted by the ANN models and
a spectral region with lowest fitness function was selected.
The results are listed ihable 4.

4.2. NAS calculations

The NAS calculations were performed for each analyte
separately. By using of the calibration data, the projection
matrix (H) was calculated for each drug (Ef)). The num-
ber of PLS latent variables required for the PLS estimation
of the original data matrixf{) was found to be 3 for both
drugs. The NAS vectors for each mixture, and for each drug,
were obtained by post-multiplying of the absorbance vector
of each mixture (both the calibration and prediction mixtures)
by the projection matrix (E(6)). In order to evaluats, the

pure component spectrum of each drug was first calculated.

In Fig. 2are shown the calculated NAS of ANTH and NAPH
for the prediction mixtures. The variations in the absorbance
spectra of mixtures are not directly related to the concentra-
tion changes of any individual analyte. While, as itis obvious
from the plots shown ifig. 2, the variations of the calculated
NAS vectors for each drug are related directly to the concen-
tration changes of each analyte. The plotgodigainsky for

1.20

0.90+

0.60//

NAS

0.30+

0.00

-0.304

-0.60
230.00

290.00
Wavelength (nm)

260.00 320.00

Fig. 2. The resolved NAS vectors of ANT (solid line) and NAP (dashed line)
in the prediction set mixtures.

Fig. 3. Net analyte signal regression plots for (A) ANT and (B) NAP.

the calibration mixtures (net analyte signal regression plot,
NASRP) are shown ifrig. 3. As it is obvious, the data of
each plot shows a nice linear behavior. Referring to the con-
centration of drugs iffable 1, it is obvious that the slopes of
these plots are directly related to the concentration of each
drug in the mixtures. Plot of the norms of the NAS vectors
against the respective concentrations of drugs in the predic-
tion set produced a linear relationship with a high correlation
coefficient.

4.3. NAS-based multivariate calibrations

In order to enhance the results obtained by the NAS cal-
culations, the CLS, PCR and PLS multivariate calibration
methods were used to model the relationship between the
NAS vectors and the concentration of analytes. The results
obtained by the three NAS-based models are represented in
Table 5. In this table are included the number of factors (f),
prediction residual errors sum of squares (PRESS), fitness
function (n), percent relative errors for the calibration and
prediction sets (REfand RER, respectively) and the square
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Table 5 Table 6
Statistical results of the NAS-based multivariate calibration models Statistical results of the conventional multivariate calibration models
Drug Parameter Regression method Drug Parameter Regression method
NAS/CLS NAS/PCR NAS/PLS CLS PCR PLS
ANT F — 3 2 ANT F — 3 3
PRESS 0.652 0.580 0.573 PRESS 8.27 0.658 0.628
n 0.367 0.222 0.218 n 4.45 0.222 0.271
RER: 1.24 0.97 0.95 RER. 9.67 1.04 1.13
RER, 1.97 1.02 1.04 RER, 12.82 1.20 1.84
rg 0.9965 0.9991 0.9980 rg 0.9821 0.9951 0.9982
rﬁ 0.9959 0.9964 0.9961 rg 0.9805 0.9952 0.9973
NAP F - 2 2 NAP F - 3 3
PRESS 0.974 0.849 0.854 PRESS 12.028 0.870 0.902
n 0.284 0.153 0.168 n 5.13 0.169 0.175
RER, 241 1.44 1.42 RER, 12.36 1.58 1.67
RER, 2.83 1.84 1.85 RER, 14.82 2.03 2.01
r2 0.9971 0.9983 0.9989 2 0.9901 0.9979 0.9984
rg 0.9957 0.9975 0.9982 rg 0.9894 0.9975 0.9980

of correlation coefficient for the calibration and prediction
sets (¢ andr2, respectively). The optimum number of prin-
cipal components of the factor analysis-based methods (i.e.

PCR and PLS) was obtained by leave-one-out cross valida- . :
tion using PRESS of cross validation. The predicted values of Table; S a'nd 6, it can be concluded that the NAS calculations
the concentrations of drugs in the prediction set obtained by are highly improved the perfarmance of the CLS method. The
the NAS/PLS model together with the percent relative errors performances ofthe PLS and P_CR methods are als_o enhanqed
are shown ifrable 2. in the case of NAS preprocessing, although, the difference is
The results listed ifable 5confirm the superiority of PLS not very significant.
and PCR methods over the CLS method. However, the differ-
ence between the results obtained by PLS and PCR modelg.5. Analyses of ANT and NAP in a commercial eye drop
are not significant. If the information contents of the calcu-
lated NAS vectors are related to the concentration changes of To examine the applicability of the proposed NAS-based
the analyte of interest, CLS is expected to give results close tocalibration methods in the analysis of the real samples, ANT
those of the PLS and PCR methods. However, as is obviousand NAP in a commercial eye drop (Sina Darou Company,
from Table 5, the results obtained by CLS are poor relative Tehran, Iran) were analyzed by the NAS/PLS regression
to those obtained by PCR and PLS. In addition, PCR used method at the optimum wavelength regions. First, 2.0 ml of
two and three factors for NAP and ANT, respectively, while the sample was taken and subjected to the successive dilu-
PLS used two factors for both drugs. Thus, it can be con- tionwith doubly distilled water to obtain concentrations inthe
cluded that, although NAS calculations give information that region of calibration curves. The absorbance spectrum of the
is unique for the analytes of interest and enhance the mod-solution was then recorded and transferred to the NAS/PLS
eling power of the CLS, PLS and PCR methods, it contains calibration models to predict the concentrations of the ANT
some non-informative contents. and NAP. In the other trials, different amounts of ANT or
The wavelength regions used by different multivariate cal- NAP or a mixture of the drugs were spiked into the original
ibration methods are about the same. The respective spectratye drop and the procedure for the analysis of ANT and NAP
regions between 240-90 nm and 270-20 nm were used bywere repeated. Each analysis was repeated seven times. The
different modeling methods for ANT and NAP. The major results are listed iffable 7. In this table, the resulting values
difference is that the spectral regions used by CLS are widerof ANT and NAP as the mean of seven replicates, the relative
than those of PCR and PLS methods. Moreover, the opti- standard deviation of seven replicate analyses and the mean
mum wavelength interval for CLS is larger than that for the recoveries are represented. The R.S.D.s for ANT and NAP
two other methods. This may be due to the importance of are varied between 0.90-4.32% and 2.95%—6.60%, respec-

process the absorbance spectra of mixtures of antazoline and
naphazoline at the optimum wavelength regions. The results
are included inTable 6. By comparing the results given in

co-linearity problem in the CLS modeling method. tively, indicating good reproducibility of the proposed anal-
ysis method. Indeed, the recoveries (relative to the declared
4.4. Conventional multivariate calibration methods amounts of drugs in the eye drop and the spiked amounts)

varied between 98.5-103.8% and 97.4-105.8% for ANT and

In order to check the importance of NAS calculations as NAP, respectively. This confirms the high accuracy of the pro-

a preprocessing method in different multivariate calibration posed method for simultaneous analyses of ANT and NAP
methods, the CLS, PCR and PLS procedures were also used tin a commercial formulation.
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Table 7

Results for analyses of antazoline and naphazoline in a commercial sterile
eye drop (anthazoline+naphazoline drop, Sina Darou Company Tehran, Iran)
by the proposed method

4] S. Ren, L. Gao, Talanta 50 (2000) 1163.
5] A. Lorber, Anal. Chem. 58 (1986) 1167.
6] N.M. Faber, Anal. Chem. 71 (1999) 557.
7] R. Boque, J. Ferg, N.M. Faber, F.X. Rius, Anal. Chim. Acta 451

No. Drug Added tothe eye Found R.S.D. Recovery (2002) 313.
drop (mg mt?) (mgmi-1)2 (%) (%) [8] l(\l.M. I):aber, J. Ferre, R. Boque, J.H. Kalivas, Trends Anal. Chem.
2003) 22.
1 ANT 0.00 4.93 4.15 98.5 [9] N.M. Faber, Anal. Chem. 70 (1998) 5108.
NAP  0.00 0.51 295 1016 [10] A. Lorber, K. Faber, B.R. Kowalski, Anal. Chem. 69 (1997) 1620.
2 ANT  4.00 9.15 1.61 103.8 [11] K. Faber, A. Lorber, B.R. Kowalski, J. Chemometr. 11 (1997)
NAP  0.00 0.48 6.60 96.3 419.
[12] J.T. Olesberg, M.A. Arnold, B. Shih-Yao, B. Shih-Yao Hu, J.M.
3 ANT 0.00 5.15 432 102.9 Wiencek, Anal. Chem. 72 (2000) 4985.
NAP ~ 1.33 1.90 3.14 105.8 [13] L. Xu, I. Schechter, Anal. Chem. 69 (1997) 3722.
4 ANT 2.70 7.76 0.90 102.3 [14] H.C. Goicoechea, A.C. Olivieri, Chemometr. Intell. Lab. Syst. 56
NAP 270 3.12 3.15 97.4 (2001) 73.

[15] N.R. Marsili, M.S. Sobrero, H.C. Goicoechea, Anal. Bioanal. Chem.
376 (2003) 126.

[16] A.E. Mansilla, 1.D. Meras, M.J.R. Gomez, A. Munoz de la Pena, F.
Salinas, Talanta 58 (2002) 255.

[17] G.V. Truyols, J.R. Torres-Lapasio, M.C. G@acAlvarez-Coque, J.

5. Conclusion Chromatogr. A 991 (2003) 47.

[18] A. Munz de la Pena, A.E. Mansilla, M.l.LA.A. Valenzuela, H.C.

Net | . l-b d ltivariat librati thod Goicoechea, A.C. Olivieri, Anal. Chim. Acta 463 (2002) 75.
etanalyte signal-based multivariate calibration methods 1 ;i jiang, R.J. Berry, H.W. Siesler, Y. Ozaki, Anal. Chem. 74 (2002)

(i.e. NAS/CLS, NAS/PCR and NAS/PLS) were employed for 3555.
simultaneous determination of antazoline and naphazoline.[20] C.H. Spiegelman, M.J. McShane, M.J. Goetz, M. Motamedi, Q.L.
An experimental design-artificial neural network approach Yue, G.L. Cote, Anal. Chem. 70 (1998) 35. _
was used for the selection of spectral regions that showed?1] (Hz'gdz)ef'l"f:‘:hea’ A.C. Olivieri, J. Chem. Inf. Comput. Sci. 42
to get the best results. The wavelength regions selected,,; ;1 kaiivas, N. Roberts, J.M. Sutter, Anal. Chem. 61 (1989) 2024.
for NAS/CLS model were wider than those obtained by [23] R. Leardi, J. Chemometr. 8 (1994) 65.
the other methods. All models provided excellent results [24] V. Centner, D.L. Massart, O.E. deNoord, S. Jong, B.M. Vandeginste,
with relative prediction errors lower than 2%. The results C. Sterna, Anal. Chem. 68 (1996) 3851.
confirmed the Superiority of the NAS/PLS and NAS/PCR [25] B.K. Alsb_erg, A.M. Woodward, M.K. Winson, J.J. Rowl, D.B. Kell,
. Anal. Chim. Acta 368 (1998) 29.

over the NAS/CLS. Comparison of the NAS pre-proceeded [,¢; \.c.u. araujo, T.C.B. Saldanha, R.K.H. Galvao, T. Yoneyama, H.C.
multivariate calibration models with the conventional ones Chame, V. Visani, Chemometr. Intell. Lab. Syst. 57 (2001) 65.
revealed that the NAS calculations greatly highly affected [27] H.C. Goicoechea, A.C. Olivieri, Analyst 124 (1999) 725.
the results of CLS model and improved the results obtained[28] F. Despagne, D.L. Massart, Analyst 123 (1998) 157R.
by this model. The NAS calculations also enhanced the factor[29] S: Seculic, M.B. Seasholtz, Z. Wang, B.R. Kowalsky, S.E. Lee, B.R.

. : Holt, Anal. Chem. 65 (1993) 835A.
analysis based metho.ds'FfLS and P,CR’. although the dlffer'[30] M. Shamsipur, B. Hemmateenejad, M. Akhond, Anal. Chim. Acta
ences were not very significant. Application of the proposed 461 (2002) 147.
NAS/PLS method to an anthazoline + naphazoline commer-[31] B. Hemmateenejad, M.A. Safarpour, F. Taghavi, J. Mol. Struct.
cial eye drop revealed that the method could analyze the drugs ~ (Theochem) 635 (2003) 183.

in real samples with quantitative recoveries. [32] B. Hemmateenejad, M. Akhond, R. Miri, M. Shamsipur, J. Chem.
Inf. Comput. Sci. 43 (2003) 1328.

[33] L.F. Capiin-Vallvey, N. Navas, M. del OImo, V. Consonni, R. Tode-
schini, Talanta 52 (2000) 1069.
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