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Abstract

Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and nap-
h ares (CLS),
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azoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squ
rincipal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to
avelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy fo

egion optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into accoun
pectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of a
ariate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fitness function based
ean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-pro

earning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regres
rom the resulted ANN models, the spectral regions in which lowest fitness could be obtained were chosen. Comparison of the resu

hat the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was s
pplied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Multivariate spectral calibrations, which are now become
tandard methods for performing quantitative spectral analy-
is, allow the simultaneous determination of several analytes
n a given mixture[1]. Partial least squares (PLS) and princi-
al component regression (PCR) are the most common multi-
ariate calibration methods for quantitative spectral analysis
2–4]. These full spectrum multivariate calibration methods
ffer the advantages of speed in the determination of compo-

∗ Corresponding author. Tel.: +98 831 4274580; fax: +98 831 4274503.
E-mail address: mshamsipur@yahoo.com (M. Shamsipur).

nents of interests in mixtures and avoiding separation
in the analytical procedures.

Recently, a new family of multivariate calibration me
ods based on the concept of net analyte signal (NAS
been proposed[5–18]. NAS was defined by Lorber[5] as
the part of a mixture spectrum that is useful for mo
building; this implies that NAS is part of the spectrum
mixture that is orthogonal to the spectra of interferen
and background variations. The NAS calculations are
both for estimation of the figures of merit of an ana
ical method[6–8] and for the construction of multivar
ate calibration models[9–12]. The hybrid linear analys
(HLA) methods developed by Xu and Schechter (HAL/X

039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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[13] and Goicoechea and Olivieri (HLA/GO)[14] are con-
structed based on the NAS concept. Other NAS-based mul-
tivariate calibration methods have also been proposed in
which the vectors of NAS of mixtures are used as input
for other multivariate calibration methods such as classical
least squares (NAS/CLS), principal component regression
(NAS/PCR) and partial least squares regression (NAS/PLS)
[15–18]. Moreover, in a simple case, the norm of the NAS
vector can be used to construct a univariate calibration
model, where this parameter is plotted against the analyte
concentration and a linear relationship is observed, ide-
ally.

Application of the mentioned methods to multi-
component spectroscopic analysis usually requires spectral
variable selection for building well-fitted models and avoid-
ing non-modeled interferences[19–21]. Training the multi-
variate calibration methods with selected spectral regions,
rather than full-spectrum region, allows the informative
part of the spectrum, which is related to the variation of
concentration of analyte, to be modeled and, therefore,
other parts of spectrum which are related to the varia-
tion of concentration of other analytes and/or background
variations will be discarded. Hence, the performance of
multivariate calibration models will be enhanced. Several
approaches have been proposed for selection of optimal
set of spectral regions for multivariate calibration such as
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neural network for wavelength selection in PLS calibration
[33].

In the present work, we applied an experimental design
strategy for variation of the three spectral parameters[34].
Very different combinations of spectral parameters were
selected and, in each combination, the performance of mul-
tivariate calibration models used was evaluated. An artificial
neural network model with back-propagation learning algo-
rithm was used to model the relationship existed between
the prediction ability of the models and the correspond-
ing selected spectral parameters. From the optimized ANN
model, those spectral parameters that give most of the results
were selected for each multivariate calibration model. Four
different NAS-based multivariate calibration models includ-
ing NAS/CLS, NAS/PCR, NAS/PLS and univariate exten-
sion of NAS calculation were used. The methods were used
for simultaneous determination of antazoline and naphazo-
line in nasal solution.

Naphazoline hydrochloride (NAP) [2-(1-naphtylmethyl)-
2-imidazoline monohydrochloride] is a sympathomymetic,
belonging to the imidazole group. It is a vasoconstrictor of
relatively long-lasting action that acts on the� receptors
of the vascular smooth muscle[35]. Antazoline (ANT) is
another imidazoline ligand which has alpha 2-adrenoceptor
antagonistic properties. It is now widely recognized that imi-
dazoline derivatives provided with� -adrenoceptor antag-
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eneralized simulating annealing[22], genetic algorithm
23], artificial noise introduction in PLS modeling[24],
avelet transform[25], successive projections algorith

26] and moving windows selection strategy[27]. Genetic
lgorithms (GA) are an interesting, flexible and wid
sed variable selection method among different prop
trategies. In recent years, the moving windows stra
MWS) have been applied for wavelength region se
ion [15–18]. In this method, multivariate calibration me
ds are run on different selected wavelength windows
onsequently, those revealing better results are sele
wo spectral parameters (i.e. startingλ and endingλ) are
aried in order to select the spectral windows. Howe
he interval between the sensors (i.e. wavelength inte

I) in the selected windows is another MWS requ
ent that should be optimized to obtain most rele

esults.
Artificial neural networks (ANN) are nonparametric no

inear modeling techniques that have attracted increa
nterest in recent years[28–30]. Nonlinear multivariate ma
se a nonlinear transformation of the input variable spa
roject inputs onto the designated attribute values in
ut space. The strength of modeling with layered, fe

orward artificial neural networks lies in the flexibility
he distributed soft model defined by the weight of the
ork. Both linear and nonlinear mapping functions may
odeled by suitably configuring the network. Multila

eed-forward neural network trained with back-propaga
earning algorithm become increasingly popular techniq
31,32]. Recently, Capitán-Vallvey et al. applied Kohone
,
.

,

2
onist properties not only exhibit a high affinity for�2-
adrenoceptors but also bind to non-adrenergic imidaz
sites in various tissues[36]. Pharmaceuticals containi
the two active ingredients (anthazoline and naphazo
are currently commercialized in our country as nasal s
tion.

2. Theoretical background

CLS, PLS, ANN and experimental design are well d
umented in the literature and, therefore, these method
not discussed. The readers can refer to the cited liter
for more discussion about these methods[1–4]. Here, only
those sections related to NAS calculations and calibra
are discussed.

2.1. Notations

In this section, the following notations will be used
capital letter in boldface demonstrates a matrix and a
ercase letter in boldface denotes a vector. Lowercase
letters denote the scalars. Meanwhile, the following mat
and vectors will be used through the present work: them × n
data matrix (R) composed of the absorbance data ofm sam-
ples atn wavelengths (or sensors), a 1× n vector of the pur
spectrum of analyte k (sk), am × 1 vector of calibration con
centrations of analyte k (ck) and a 1× n vector of unknown
sample absorbance data (r).
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2.2. Net analyte signal calculations

Lorber has defined the NAS for an analyte k in a given
mixture as the part of its spectrum, which is orthogonal to the
space spanned by the spectra of all other analytes and inter-
ferences[5]. Some different algorithms have been proposed
for NAS calculations[9–12]. In this work, the algorithm sug-
gested by Lorber for inverse multivariate calibrations was
employed[12]. First, the PLS regression was done on the
calibration data (Randck) and, at optimum number of fac-
tors, the absorbance data matrix was reconstructed (R̂). After
that, theR̂−k matrix containing the absorbance data of all
existing species in the calibration sample expect the analyte
k was calculated by rank annihilation method:

R̂−k = R̂ − αĉkdk (1)

wheredk is the spectral information of the analyte of inter-
est,ĉk is the estimated concentration of the analyte k by the
following equation:

ĉk = R̂R̂
+
ck (2)

the superscripts “+” denote the matrix pseudo-inverse andα

is a scaling factor calculated by Eq.(3):

α = 1
(3)
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concentration of analyte in the mixtures can be written in the
classical least square (CLS) form:

R∗ = cks∗
k (7)

In CLS regression, the major requirement is that the concen-
tration of all absorbing components should be known and
this limits the application of CLS in the simultaneous deter-
minations. However, in the NAS/CLS model (Eq.(7)), R*

contains the spectral information of the analyte of interest
(not the absorbance contribution of other coexisting compo-
nents). Therefore, CLS can be successfully applied to the
NAS data.

NAS/CLS is an ideal model in which it is assumed that
calculated NAS only contains the spectral information of the
analyte of interest. But, in some instances, the calculated NAS
should be containing some spectral impurity of other sources
rather than analyte because of interactions between compo-
nents, some non-linearities or other sources. In these cases,
the NAS/CLS is not the best choice and inverse calibration
methods especially factor analysis based methods can over-
come these problems. NAS/PCR and NAS/PLS are inverse
regression methods in which the NAS is used as input of PCR
and PLS regression methods.
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projection matrix, which is orthogonal tôR−k is defined
s:

= I − (R̂−k)
+

R̂−k (4)

et analyte signal vector (r∗
k) is calculated by post multiply

ng of projection matrix (H) by the vector spectra of mixt
r):

∗
k = Hr (5)

f r replaced by the matrix of absorbance data (R), the
and side of the Eq.(5)will be the matrix of NAS of the sam
ize asR.

.3. NAS-based calibrations

The NAS vector (r∗k) is a characteristic of analyte of inte
st and its length (norm) is directly related to the ana
oncentration:

r∗
k

∥∥ = bc (6)

his is a type of Bear–Lambert equation.|| || denote the norm
f a vector and is a scalar andb is a proportionality constan

In Eq. (5), if r replaced by the pure spectrum of ana
(sk), the left hand side of this equation will be the net p
pectrum of analyte k, i.e. a part of pure spectrum w
s orthogonal to the spectra of other absorbing species∗

k).
he relationship between the matrix of NAS (R* ), s∗

k and the
. Experimental

.1. Apparatus and reagents

Antazoline and naphazoline (both from Merck Compa
tock solutions were prepared by dissolving approp
mounts of each drug in triply distilled water.

All spectra were recorded on an Ultrospec 3000 pro (P
acia Biotech) UV–vis spectrophotometer equipped
0 mm quartz cells. The Swift(II) software was used to co

he absorbance data of the solution into a spreadsheet.
All necessary programs needed for NAS calculation, C

CR and PLS regressions and ANN modeling were wr
n MATLAB 6.0 (MathWorks Inc.) and run on a Pentium
ersonal computer with Windows XP operating system.

.2. Methodology

Two sets of the standard solutions of mixtures of the
rugs were prepared (36 calibration solutions and 16 va

ion solutions). The calibration set solutions were prep
ccording to 6-level full factorial design. Using such a des
aximum information for each compound can be obta
y using only a few numbers of standard solutions. InTable 1

he concentrations of standard solutions are represent
rder to evaluate the performance of the employed mo
6 standard solutions were considered in the validatio
hose concentrations were selected randomly (Table 2
reparation of each standard solution, appropriate volu
f the stock solution of each drug were added to 10.
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Table 1
Concentrations of drugs in the calibration set (�g ml−1)

Solution no. NAP ANT Solution no. NAP ANT

1 0.87 0.82 19 26.2 0.82
2 0.87 9.00 20 26.2 9.00
3 0.87 17.0 21 26.2 17.0
4 0.87 25.3 22 26.2 25.3
5 0.87 33.5 23 26.2 33.5
6 0.87 43.0 24 26.2 43.0
7 8.72 0.82 25 36.5 0.82
8 8.72 9.00 26 36.5 9.00
9 8.72 17.0 27 36.5 17.0

10 8.72 25.3 28 36.5 25.3
11 8.72 33.5 29 36.5 33.5
12 8.72 43.0 30 36.5 43.0
13 17.4 0.82 31 47.0 0.82
14 17.4 9.00 32 47.0 9.00
15 17.4 17.0 33 47.0 17.0
16 17.4 25.3 34 47.0 25.3
17 17.4 33.5 35 47.0 33.5
18 17.4 43.0 36 47.0 43.0

volumetric flasks and diluted with triply distilled water. The
absorbance spectra of each solution was recorded in the
wavelength region of 230–330 nm and digitized in 1.0 nm
intervals. The order of recording of absorbance spectra of
calibration and validation samples were chosen randomly in
order to neglect the effect of recording time.

The NAS vectors of each standard solution were calcu-
lated according to the procedure discussed in the theoreti-
cal section. The NAS/CLS, NAS/PCR, NAS/PLS programs
were written in MATLAB. Leave-one-out cross validation
combining with theF-test criterion of Thomas and Haaland
[37] were used to select optimum number of factors in the
NAS/PCR and NAS/PLS models. The performance of each
model was evaluated by root mean square error of cross val-
idation (RMSECV) root mean square error of calibration

Table 2
Concentrations of drugs in the prediction set in�g ml−1 (actual), their
corresponding predicted values (pred) and percent of relative error (%RE)
obtained by NAS/PLS model

Solution no. NAP ANT

Actual Pred %RE Actual Pred %RE

1 1.60 1.65 3.13 17.6 18.0 2.27
2 6.40 5.95 −7.03 3.20 3.45 7.81
3 11.2 11.5 2.68 38.4 37.2 −3.12
4 16.0 15.2 −5.26 25.6 25.5 −0.39

45

0
1
1
1
1 42
1 7
1
1 0

(RMSEC), root mean square error of validation (RMSEV)
and the multiple of determination coefficient for calibration
and prediction (R2C andR2

V, respectively).

3.3. Experimental design-neural network for wavelength
selection

Starting wavelength (SW), ending wavelength (EW) and
wavelength interval (WI) are three common spectral param-
eters that define a window of wavelength region. These spec-
tral parameters were used as factorial design factors. The
SW was varied between 200 nm and 280 nm in 20 inter-
vals and EW was selected between 230 nm and 320 nm in
10 nm intervals. The WI was varied between 1 nm and 7 nm.
By using the full factorial design, different combinations
of spectral factors were selected and, consequently, differ-
ent wavelength regions were determined. Sub-matrices of
the original absorbance data matrix were constructed con-
sidering the selected wavelength region properties. Different
NAS-based multivariate calibration methods were run on the
sub-matrices and in each case the RMSEC and RMSEV were
calculated. The fitness function (η), was calculated using the
RMSEC and RMSEV:

η =
{

[(mc − n − 1)]RMSEC2 + mvRMSEV2]
}1/2

(8)
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5 20.8 21.6 3.85 22.4 22.3 0.
6 20.8 20.1 −3.36 9.60 9.20 −4.15
7 22.4 23.3 4.01 33.6 31.5 −6.25
8 36.8 35.6 −3.26 14.4 13.5 −6.25
9 43.2 42.2 −0.23 27.2 27.2 0.0
0 14.4 14.6 1.39 16.0 15.6 −2.50
1 33.6 34.3 2.08 20.8 20.5 −1.44
2 8.00 7.85 −1.87 17.6 17.4 −1.14
3 27.2 27.7 1.69 24.0 24.1 0.
4 22.4 21.0 −6.25 8.00 8.4 5.6
5 33.6 33.8 0.59 11.2 10.5 −6.25
6 4.80 4.56 −5.00 36.8 36.8 0.0
(mc + mv − n − 1)

heremc andmv are the number of standard solutions in
alibration and validation sets, respectively, andn represent
he number of sensors (wavelengths) used in each sp
egion.

Now, for each multivariate calibration model, there
mw × nw) matrix of spectral factors (mw being the numbe
f selected spectral windows andnw the number of spec

ral factors, i.e.nw = 3) and a (mw × 1) vector of fitness. A
hree-layered feed-forward artificial neural network mo
ith back-propagation of error algorithm was used to m

he relationship between the matrix of spectral factors
s independent variables (i.e. input of network) and fit

unction (f) as dependent variable. The network used
as one that has been discussed previously.

. Results and discussion

Electronic absorption spectra of aqueous solution
0.0�g ml−1 of ANT and NAP and a mixture containin
0.0�g ml−1 of each drug are shown inFig. 1. The high
egree of overlapping of spectra of drugs is obvious f

his figure.
The first step in any multivariate calibration method

nding the linear working range for each analyte, separa
or this purpose, a single-component calibration curve
lotted for each drug at itsλmax (i.e. 242 nm and 280 n

or ANT and NAP, respectively). It was found that t
alibration curves were linear in the concentration ran
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Fig. 1. Absorbance spectra of 20�g ml−1 of ANT and NAP and a mixture
of 10�g ml− of both drugs.

of 0.80–75.00�g ml−1 for ANT and 1.00–65.0�g ml−1

for NAP. However, in order to insure that the maximum
absorbance of mixtures do not exceed 3.0, the maximum con-
centrations of the two drugs used for preparation of standard
mixture solutions were chosen to be 50.0�g ml−1.

For multivariate calibration modeling, two sets of stan-
dard solutions were prepared. The calibration mixtures (36
samples) were used for model building and the validation
mixtures (16 samples) were used to evaluate the performance
of the constructed models.

4.1. Wavelength region selection

Application of the multivariate calibration methods to
the multi-component spectroscopic analysis usually requires
spectral variable selection for building well-fitted models and
avoiding non-modeled interferences. Meanwhile, through
the wavelength selection procedure, the non-informative
parts of spectrum of collinear absorbance data are discarded
from the original data. The absorbance spectra of the mix-
tures of ANT and NAP (Fig. 1) can be divided to three
regions. These include below 235 nm, in which both com-
ponents possess high absorbances so that the absorbance
some mixtures are exceeded that of the instrument reading,
between 235 nm and 265 nm which contain more informa-
t 0 nm
r is
p

In this section, attempts were made to select the best
wavelength range for each drug separately. For this pur-
pose, an experimental design strategy was used to select
different combinations of spectral parameters. The perfor-
mances of the four different multivariate calibration methods
employed at the selected regions were evaluated. Some dif-
ferent criteria are existed for evaluation of the multivariate
calibration methods through wavelength selection regions
including selectivity (SEL) proposed by Lorber, RMSCV,
RMSECV and, recently, an error indicator function (EIF)
proposed by Goicoechea and Olivieri[14]. Here, the authors
used the concepts of selectivity, sensitivity and detection limit
to measure the quality of the models. Therefore, they found
spectral regions that had the optimum values for the selectiv-
ity and sensitivity as measured by the NAS calculations. In
almost all approaches, the prediction ability of the optimized
model was emphasized in order to avoid the over fitting prob-
lem. However, in some instances, under fitting problem could
be obtained by using these criteria. Thus, in this work, we used
the fitness function (η), which is calculated based on the use
of both the RMSEC and RMSEV, to avoid both under-fitting
and over-fitting problems for model evaluation (Eq.(8)).

The ANN model used here for modeling the nonlinear
relationship between spectral parameters and fitness func-
tions for each multivariate calibration method contains three
layers: an input layer, a hidden layer and an output layer. The
i uding
S ode
( of
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e ized
t tions
w r ele-
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b ld be
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t ion
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e del,
t was
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e eters

T
N rent mu

R

Epo

N 280
N 220
N 210
ion about the absorbance data of ANT, and beyond 26
egion, in which the spectral information due to NAP
redominant.

able 3
euron architectures used for wavelength region optimization of diffe

egression method ANT

NH η α

AS/CLS 3 0.94 0.14
AS/PCR 3 0.85 0.26
AS/PLS 2 0.97 0.33
of

nput layer has three nodes (spectral parameters) incl
W, EW and WI and the output layer contained only one n

fitness function). A bias unit with a constant activation
nity was connected to each unit in the hidden and outpu
rs. The number of nodes in the hidden layer was optim

hrough a learning procedure. Several network configura
ere tested, each with a different number of hidden laye
ents. The ANN models confined to a single hidden l
ecause network with more than one hidden layer wou
arder to train. To insure that the over fitting and unde

ing of the ANN model do not occur, the fitness funct
η) was calculated from the training and validation data
ach configuration. For each multivariate calibration mo

he training was stopped when no further improvement
ound in the fitness function. The network parameters inc
ng learning rate (η), momentum (α), number of nodes in
idden layer (NH) and transfer functions in the hidden a
utput layers was optimized to give a lower fitness fu

ion. It was found that, for all of the neurons, the sigm
nd linear transfer functions used for hidden and output
rs, respectively, give better results. The network param

ltivariate regression methods

NAP

ches NH η α Epoches

00 2 0.98 0.22 23000
00 3 0.0.91 0.19 16000
00 2 0.87 0.24 18000
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Table 4
Optimized spectral parameters obtained by ANN modeling

Regression method ANT NAP

SW EW WI SW EW WI

NAS/CLS 240 280 6 280 320 5
NAS/PCR 250 270 1 270 320 4
NAS/PLS 240 260 1 280 300 3

of the optimized network for each multivariate calibration
method are presented inTable 3.

After the weights and the structures of the optimized net-
works were determined, the spectral parameters were scanned
in 1.0 nm intervals. In each case, the fitness of the multivari-
ate calibration model was predicted by the ANN models and
a spectral region with lowest fitness function was selected.
The results are listed inTable 4.

4.2. NAS calculations

The NAS calculations were performed for each analyte
separately. By using of the calibration data, the projection
matrix (H) was calculated for each drug (Eq.(5)). The num-
ber of PLS latent variables required for the PLS estimation
of the original data matrix (̂R) was found to be 3 for both
drugs. The NAS vectors for each mixture, and for each drug,
were obtained by post-multiplying of the absorbance vector
of each mixture (both the calibration and prediction mixtures)
by the projection matrix (Eq.(6)). In order to evaluates∗

k, the
pure component spectrum of each drug was first calculated.
In Fig. 2are shown the calculated NAS of ANTH and NAPH
for the prediction mixtures. The variations in the absorbance
spectra of mixtures are not directly related to the concentra-
tion changes of any individual analyte. While, as it is obvious
f ed
N cen-
t

F line)
i

Fig. 3. Net analyte signal regression plots for (A) ANT and (B) NAP.

the calibration mixtures (net analyte signal regression plot,
NASRP) are shown inFig. 3. As it is obvious, the data of
each plot shows a nice linear behavior. Referring to the con-
centration of drugs inTable 1, it is obvious that the slopes of
these plots are directly related to the concentration of each
drug in the mixtures. Plot of the norms of the NAS vectors
against the respective concentrations of drugs in the predic-
tion set produced a linear relationship with a high correlation
coefficient.

4.3. NAS-based multivariate calibrations

In order to enhance the results obtained by the NAS cal-
culations, the CLS, PCR and PLS multivariate calibration
methods were used to model the relationship between the
NAS vectors and the concentration of analytes. The results
obtained by the three NAS-based models are represented in
Table 5. In this table are included the number of factors (f),
prediction residual errors sum of squares (PRESS), fitness
function (η), percent relative errors for the calibration and
prediction sets (REPc and REPp, respectively) and the square
rom the plots shown inFig. 2, the variations of the calculat
AS vectors for each drug are related directly to the con

ration changes of each analyte. The plots ofr∗
k againsts∗

k for

ig. 2. The resolved NAS vectors of ANT (solid line) and NAP (dashed
n the prediction set mixtures.



1228 B. Hemmateenejad et al. / Talanta 68 (2006) 1222–1229

Table 5
Statistical results of the NAS-based multivariate calibration models

Drug Parameter Regression method

NAS/CLS NAS/PCR NAS/PLS

ANT F – 3 2
PRESS 0.652 0.580 0.573
η 0.367 0.222 0.218
REPc 1.24 0.97 0.95
REPp 1.97 1.02 1.04
r2
c 0.9965 0.9991 0.9980

r2
p 0.9959 0.9964 0.9961

NAP F – 2 2
PRESS 0.974 0.849 0.854
η 0.284 0.153 0.168
REPc 2.41 1.44 1.42
REPp 2.83 1.84 1.85
r2
c 0.9971 0.9983 0.9989

r2
p 0.9957 0.9975 0.9982

of correlation coefficient for the calibration and prediction
sets (r2c andr2

p, respectively). The optimum number of prin-
cipal components of the factor analysis-based methods (i.e.
PCR and PLS) was obtained by leave-one-out cross valida-
tion using PRESS of cross validation. The predicted values of
the concentrations of drugs in the prediction set obtained by
the NAS/PLS model together with the percent relative errors
are shown inTable 2.

The results listed inTable 5confirm the superiority of PLS
and PCR methods over the CLS method. However, the differ-
ence between the results obtained by PLS and PCR models
are not significant. If the information contents of the calcu-
lated NAS vectors are related to the concentration changes of
the analyte of interest, CLS is expected to give results close to
those of the PLS and PCR methods. However, as is obvious
from Table 5, the results obtained by CLS are poor relative
to those obtained by PCR and PLS. In addition, PCR used
two and three factors for NAP and ANT, respectively, while
PLS used two factors for both drugs. Thus, it can be con-
cluded that, although NAS calculations give information that
is unique for the analytes of interest and enhance the mod-
eling power of the CLS, PLS and PCR methods, it contains
some non-informative contents.

The wavelength regions used by different multivariate cal-
ibration methods are about the same. The respective spectral
regions between 240–90 nm and 270–20 nm were used by
d jor
d ider
t opti-
m the
t e of
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Table 6
Statistical results of the conventional multivariate calibration models

Drug Parameter Regression method

CLS PCR PLS

ANT F – 3 3
PRESS 8.27 0.658 0.628
η 4.45 0.222 0.271
REPc 9.67 1.04 1.13
REPp 12.82 1.20 1.84
r2
c 0.9821 0.9951 0.9982

r2
p 0.9805 0.9952 0.9973

NAP F – 3 3
PRESS 12.028 0.870 0.902
η 5.13 0.169 0.175
REPc 12.36 1.58 1.67
REPp 14.82 2.03 2.01
r2
c 0.9901 0.9979 0.9984

r2
p 0.9894 0.9975 0.9980

process the absorbance spectra of mixtures of antazoline and
naphazoline at the optimum wavelength regions. The results
are included inTable 6. By comparing the results given in
Tables 5 and 6, it can be concluded that the NAS calculations
are highly improved the performance of the CLS method. The
performances of the PLS and PCR methods are also enhanced
in the case of NAS preprocessing, although, the difference is
not very significant.

4.5. Analyses of ANT and NAP in a commercial eye drop

To examine the applicability of the proposed NAS-based
calibration methods in the analysis of the real samples, ANT
and NAP in a commercial eye drop (Sina Darou Company,
Tehran, Iran) were analyzed by the NAS/PLS regression
method at the optimum wavelength regions. First, 2.0 ml of
the sample was taken and subjected to the successive dilu-
tion with doubly distilled water to obtain concentrations in the
region of calibration curves. The absorbance spectrum of the
solution was then recorded and transferred to the NAS/PLS
calibration models to predict the concentrations of the ANT
and NAP. In the other trials, different amounts of ANT or
NAP or a mixture of the drugs were spiked into the original
eye drop and the procedure for the analysis of ANT and NAP
were repeated. Each analysis was repeated seven times. The
r es
o ative
s mean
r NAP
a spec-
t al-
y lared
a unts)
v and
N pro-
p NAP
i

ifferent modeling methods for ANT and NAP. The ma
ifference is that the spectral regions used by CLS are w

han those of PCR and PLS methods. Moreover, the
um wavelength interval for CLS is larger than that for

wo other methods. This may be due to the importanc
o-linearity problem in the CLS modeling method.

.4. Conventional multivariate calibration methods

In order to check the importance of NAS calculation
preprocessing method in different multivariate calibra
ethods, the CLS, PCR and PLS procedures were also u
esults are listed inTable 7. In this table, the resulting valu
f ANT and NAP as the mean of seven replicates, the rel
tandard deviation of seven replicate analyses and the
ecoveries are represented. The R.S.D.s for ANT and
re varied between 0.90–4.32% and 2.95%–6.60%, re

ively, indicating good reproducibility of the proposed an
sis method. Indeed, the recoveries (relative to the dec
mounts of drugs in the eye drop and the spiked amo
aried between 98.5–103.8% and 97.4–105.8% for ANT
AP, respectively. This confirms the high accuracy of the
osed method for simultaneous analyses of ANT and

n a commercial formulation.
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Table 7
Results for analyses of antazoline and naphazoline in a commercial sterile
eye drop (anthazoline+naphazoline drop, Sina Darou Company Tehran, Iran)
by the proposed method

No. Drug Added to the eye
drop (mg ml−1)

Found
(mg ml−1)a

R.S.D.
(%)

Recovery
(%)

1 ANT 0.00 4.93 4.15 98.5b

NAP 0.00 0.51 2.95 101.0b

2 ANT 4.00 9.15 1.61 103.8
NAP 0.00 0.48 6.60 96.3

3 ANT 0.00 5.15 4.32 102.9
NAP 1.33 1.90 3.14 105.8

4 ANT 2.70 7.76 0.90 102.3
NAP 2.70 3.12 3.15 97.4

a Average concentration over seven replicates.
b These recovery values were calculated relative to the declared amount

of the eye drop sample: ANT, 5.00mg ml−1 and NAP, 0.50mg ml−1.

5. Conclusion

Net analyte signal-based multivariate calibration methods
(i.e. NAS/CLS, NAS/PCR and NAS/PLS) were employed for
simultaneous determination of antazoline and naphazoline.
An experimental design-artificial neural network approach
was used for the selection of spectral regions that showed
to get the best results. The wavelength regions selected
for NAS/CLS model were wider than those obtained by
the other methods. All models provided excellent results
with relative prediction errors lower than 2%. The results
confirmed the superiority of the NAS/PLS and NAS/PCR
over the NAS/CLS. Comparison of the NAS pre-proceeded
multivariate calibration models with the conventional ones
revealed that the NAS calculations greatly highly affected
the results of CLS model and improved the results obtained
by this model. The NAS calculations also enhanced the factor
analysis based methods PLS and PCR, although the differ-
ences were not very significant. Application of the proposed
NAS/PLS method to an anthazoline + naphazoline commer-
cial eye drop revealed that the method could analyze the drugs
in real samples with quantitative recoveries.
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